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Abstract. The influence of the anharmonic vibron–phonon coupling, arising on account of
a ‘dressing’ effect, on the characteristics of the lattice subsystem in quasi-one-dimensional
molecular crystals was examined within the ‘pseudo-harmonic’ phonon approximation. It was
found that solitons could induce specific modifications of the speed of sound which shows
a temperature dependence quite different to that in the case of the linear excitations. The
possibility of an indirect experimental verification of the existence of solitons in molecular
chains is suggested on the basis of these predictions.

Investigations of the properties of solitons in molecular crystals, especially those aimed
at achieving an understanding of their role in the charge and energy transfer over large
distances, have attracted considerable interest for more than twenty years [1–6]. The
majority of the studies on the subject are concerned with the soliton formation occurring
as a result of a single exciton (a vibrational one (avibron) or an electronic one (aFrenkel
exciton)) or electron being trapped by the induced local distortion of the host lattice. The
possibility of the creation of such excitations was examined within the general theory of self-
trapping (ST) phenomena [7, 8] and it was found [9–13] that Davydov’s original proposal,
i.e. soliton formation due to the single-exciton ST, cannot explain intramolecular vibrational
energy transfer inα-helix and acetanilide (ACN). That is, according to the available data
[3, 4], the width of the exciton band of these substances (7.9× 10−23 to 1.55× 10−22 J)
is too small as compared with the maximal phonon frequency ((18–21) × 10−22 J) in the
nonadiabatic limit, so one should expect the formation of the vibron analogue of Holstein’s
small polaron [14] rather than a soliton.

Nevertheless, the possibility of soliton creation in such substances cannot be excluded
totally. In fact, recent analysis [15], carried out within the framework of the mean-field
approximation based upon the variational extension of the Lang–Firsov unitary transform
(LFUT) method [16], points to the possibility of soliton formation even in systems
characterized by values of physical parameters for which Davydov’s original proposal does
not apply, i.e. even in the nonadiabatic limit. This, however, demands higher excitation
concentrations in the system, where direct or indirect (phonon-mediated) exciton–exciton
interaction significantly changes the conditions for soliton existence [15–20]. In this way, a
solitonic mechanism for the intramolecular energy transfer in molecular crystals remains a
possibility, but the idea should be based on different grounds. That is, as pointed out above,
the width of the vibron band is about ten to thirty times smaller than that of the phonon
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one, which excludes the possibility of ST as a mechanism of soliton formation. In that case
an effective, phonon-induced, vibron–vibron interaction plays the dominant role in soliton
creation, where the soliton now represents the bound state of the large number of vibron
quanta [15]. The high degree of occupation of the vibron modes, necessary for the creation
of such entities, may be achieved due to the excitation of the large number of so-called
‘amid-I’ quanta. In the case of the application of the soliton model in the explanation of
energy transfer in biological systems (α-helix for example), it is usually assumed [1–6] that
vibrons are excited on account of the resonant absorption of chemical energy released in
the hydrolysis of adenosine triphosphate. Note also that the macroscopic occupation of the
vibron modes indicates the applicability of the semiclassical approximation and justifies the
selection of the coherent stateansatzas the method for making the choice of the trial state
of the multi-vibron system (see [15] and references therein).

In our previous paper [15] we did not take into account: (i) possible changes of the
phonon spectrum due to the induced phonon–phonon correlations which are the consequence
of the anharmonic (in terms of phonon operators) interaction of ‘dressed’ quasiparticles and
‘new’ phonons; or (ii) the remaining interaction of the soliton with ‘new’ phonons. In the
present paper we shall focus on the examination of the first of the above-mentioned issues,
while the second one, which is interesting in its own right, will be examined separately.
Our attention will be mainly concentrated on the soliton-induced modification of the speed
of sound. According to the results of the previous analysis [15] these effects should be
important in the nonadiabatic limit where the ‘dressing’ is maximal and where the effective
vibron–vibron interaction plays the main role in the soliton formation.

To achieve the above-proposed goal we shall utilize the pseudo-harmonic phonon
approximation [21–24]. As presented in this article, such an approach represents a slightly
modified version of the previous mean-field method [15]. It consists in a transition from
the original Hamiltonian to an equivalent one with renormalized system parameters which
should be determined self-consistently using the Bogolyubov theorem [24]. The starting
point of our analysis represents the Hamiltonian of a 1-d molecular chain, rewritten, with
the help of the LFUT method, in terms of ‘dressed’ vibrons (polarons) and new phonon
operators [15]:

H = [1− EB ]
∑
n

B+n Bn − J
∑
n

(B+n Bn+12
+
n 2n+1+ HC)

− EB
∑
n

[B+2
n B2

n +
1

2
(B+n B

+
n+1Bn+1Bn + HC)]

+ 1

2

∑
q

[pqp−q
M
+Mω2

ququ−q
]

(1)

where

2n = exp

{
1√
N

∑
q

F ∗q
h̄ωq

e−iqR0(aq − a+−q)
}
.

The operatorsB+n (Bn) describe the ‘dressed’ vibron,1 is the excitation energy of thenth
molecular group and

pq = i

√
h̄ωqM

2
(a+q − a−q) and uq =

√
h̄

2Mωq
(aq + a+−q)

represent the Fourier components of the momentum and displacement operators of the
molecular groups of the molecular chain (a+q andaq are the phonon creation and annihilation
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operators). The meaning of the remaining parameters is the same as in [15]:J is the intersite
dipole–dipole transfer integral,ωq = ωB sin|qR0/2| is the phonon frequency (ωB = 2

√
κ/M

is the phonon bandwidth whileκ andM denote the spring constant and mass of the molecular
group respectively),

EB = 1

N

∑
q

|Fq |2
h̄ωq

represents the small-polaron binding energy,

Fq = 2iχ

√
h̄

2Mωq
sinqR0

denotes the exciton–phonon coupling parameter,χ is the vibron–phonon coupling strength,
R0 denotes the lattice spacing and finallyN � 1 is the number of molecular groups in
the chain. Here we have corrected the misprints present in the equations (3) and (4) of
reference [15] where the vibron–vibron interaction term is half the size that it should be.
Please note that this does not affect the results of the previous analysis qualitatively. To be
precise, all of the conclusions of the previous paper are valid after the simple substitution
of 2N for N in formulae (17) to (20) (N represents the total number of vibrons engaged
in the soliton formation). The pure phonon part of the above expression is written in terms
of pq anduq for further mathematical convenience. Since the present analysis concerns the
strict nonadiabatic limit where, as mentioned above, phonon–phonon correlations are the
most significant, the choice of the maximal value of the dressing fractionδ = 1 in (1) is
justified.

The next step of our mean-field approach is the choice of the so-called effective
(harmonic in terms of phonon operators) Hamiltonian:

Heff = [1− EB ]
∑
n

B+n Bn − Jeff
∑
n

B+n (Bn+1+ Bn−1)

− EB
∑
n

[
B+2
n B2

n +
1

2
(B+n B

+
n+1Bn+1Bn + HC)

]
+ 1

2

∑
q

[pqp−q
M
+Mω̃2

ququ−q
]

(2)

where Jeff and ω̃q are variational parameters representing the effective dipole–dipole
transfer integral of the dressed excitations and the frequency of the so-called pseudo-
harmonic phonons, respectively. In accordance with the standard procedure [21–24] they
will be determined by minimizing the trial free energy of the system:

F1 = F0+
〈
H −Heff

〉
0 (3)

whereF0 = Fsol + Fph represents the free energy of the fully decoupled vibron (soliton)–
phonon model, while〈· · ·〉0 denotes averaging over the assembly of the noninteracting
vibrons (solitons) and phonons. Therefore we may write〈
H −Heff

〉
0 = −

∑
n

[
(J
〈
2+n 2n+1

〉
0− Jeff )

〈
B+n Bn+1

〉
0+ HC

]
+ 1

2

∑
q

M(ω2
q − ω̃2

q)
〈
uqu−q

〉
0 . (4)
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The values averaged over the phonon ensemble in (4) are given as〈2+n 2n±1〉0 = e−S(T )

where

S(T ) = 2

N

∑
q

|Fq |2
(h̄ωq)2

sin2 qR0

2
(2ν̄q + 1) ≡ 4

N

∑
q

|Fq |2
(h̄ωq)2

sin2 qR0

2

Mω̃q

h̄
〈uqu−q〉0

represents the temperature-dependent coupling constant defined in analogy with [9–11,15],
while ν̄q = {ēhω̃q/kT − 1}−1 is the ‘pseudo-harmonic’ phonon average number.

As was shown in [21–24], minimization of the trial free energy overJeff and ω̃q
is fully equivalent to its minimization over the correlation functions〈B+n Bn±1〉0 and
〈uqu−q〉, respectively. Thus from∂F1/∂〈B+n Bn±1〉0 = 0 we foundJeff = Je−S(T ) while
∂F1/∂〈uqu−q〉0 = 0 leads to

ω̃2
q = ω2

q − 8Jeff
ω̃q

h̄

|Fq |2
(h̄ωq)2

sin2 qR0

2

[
1

N

∑
n

〈
B+n (Bn+1+ Bn−1)

〉
0

]
. (5)

The effective transfer integral, due to its dependence onν̄q , is a complicated function of
the frequency of the ‘pseudo-harmonic’ phonons, so the last expression represents a rather
complicated self-consistent equation forω̃q which cannot be found in a closed form. We
may find, however, an approximate result obtained after the replacement of all of theω̃q
on the right-hand side of the above equation with theωq . This is justified due to the fact
that the second term on the right-hand side of the above equation is proportional to the
product of the adiabaticity parameter and the coupling constant which is small in the region
where we expect solitons to exist. In this way, substitutingFq andωq into (5) and using
the explicit form of the temperature-independent coupling constant, namely

S(0) = 8

3π

EB

h̄ωB

and the adiabaticity parameter, namely

B(0) = 8

3π

2J

h̄ωB

as defined in [9–11, 15], we found straightforwardly

ω̃2
q = ω2

B

[
1− 11.1e−S(T )S(0)B(0)

1

N

∑
n

〈Bn(Bn+1+ Bn−1)〉0 cos2
qR0

2

]
sin2 qR0

2
. (6)

From the above equation we can find the speed of sound as modified by the soliton (vibron)–
phonon interactionc = limq→0 ω̃q/q:

c = c0

√
1− 11.1e−S(T )S(0)B(0)

1

N

∑
n

〈Bn(Bn+1+ Bn−1)〉0 (7)

wherec0 = ωBR0 denotes the speed of sound in the absence of soliton (exciton)–phonon
coupling.

So far we have not specified the type of the excitation of the vibron subsystem, so the
above formulae are quite general and could be applied for the examination of both soliton-
and vibron-induced changes of the phonon spectrum. The contribution from the particular
type of excitation is defined through the explicit form of the static correlation function in
equations (6) and (7).

In the spirit of the semiclassical analysis of reference [15], calculation of the soliton
input in the above correlation function demands the following procedure. We first simply
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replace the vibron operators by their coherent amplitudesβn. Then we apply the continuum
approximation which leads to∑
n

〈
B+n (Bn+1+ Bn−1)

〉
0→ 2N − R2

0

∫ ∞
−∞

dx

R0

〈∣∣∣∣∂β(x)∂x

∣∣∣∣2
〉

0

= 2N − N
3E2

B

3J 2
eff

− R2
0N 〈k2〉0. (8)

Here

β(x, t) = ei(kx−ωt)N
(
µ

2

)1/2

sech
µN
R0

(x − x0− vt)
represents the soliton solution of the effective Hamiltonian (2). It is normalized as follows:

N = 1

R0

∫
dx |β(x, t)|2.

The soliton parameters are defined as follows:

k = m∗v
h̄

µ = EB

Jeff
h̄ω = 1− EB − 2Jeff + m

∗v2

2
− N

2EB
2

Jeff

and finally

ms = Nm∗
[

1+ 16EB
2N 2R2

0

3c2h̄2

]
represents the effective mass of the soliton with

m∗ = h̄2

2Jeff R2
0

being a dressed-vibron effective band mass.
The statistical averages in the above expression will be calculated within the

phenomenological approach assuming that solitons behave as an ideal gas of classical
particles. This is justified since the soliton in a molecular crystal behaves as a classical
particle [15–19] carrying the energy and momentum

Es = ε0+ msv
2

2
Ps = msv (9)

wherev denotes the soliton velocity while

ε0 = N [1− EB − 2Jeff ] − E
2
BN 3

3Jeff
.

This concept has been successfully applied in the analysis of the thermodynamics of soliton-
bearing systems, in which the appearance of the central peak in the energy spectrum of
slow neutrons scattered by some uniaxial ferroelectrics or by quasi 1-d ferromagnets and
antiferromagnets [25–30] was quite well explained on the basis of the soliton concept. The
further procedure is straightforward and consists of two steps [25–27, 30]: we first assume
that only one soliton is excited in the system and then we generalize that result to the case
of a system with a finite soliton density. In the presence of the single soliton, the statistical
averaging in (8) simply represents an integration over the soliton phase space, i.e. over its
position and momentum, with the canonical distribution function

〈· · ·〉01 = 1

Z1
e−ε0/kT

∫ L/2

−L/2

∫ ∞
−∞

dx0 dPs
h

(· · ·) exp

(
− P 2

s

2mskT

)
(10)
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where

Z1 = e−ε0/kT

∫ L/2

−L/2

∫ ∞
−∞

dx0 dPs
h

exp

(
− P 2

s

2mskT

)
= L

h
e−ε0/kT

√
2πmskT

is the canonical ensemble partition function, andL = NR0 andh represent the length of
the system and Planck’s constant, respectively.

The total contribution arising from many solitons is simply the product of the so-obtained
result and the soliton average number

〈NS〉 = kT ∂

∂µS
lnZ.

Here Z denotes the grand canonical partition function of the soliton ideal gas:Z =
exp(Z1eµs/kT ) andµS denotes the soliton chemical potential.

The thermodynamics of the vibron system should be similar to the thermodynamics of
phonons. This means that there is no external constraint on their number, which implies
that the vibron chemical potential is equal to zero. Consequently the chemical potential of
the multi-vibron soliton ideal gas should also be set equal to zero, and for the soliton mean
number we found

〈NS〉 = kT
[
∂

∂µS
lnZ

]
µS=0

≡ L

h

√
2mSπkT e−ε0/kT . (11)

In accordance with the above-proposed procedure, the further calculations are
straightforward and give

c = c0

√
1− 11.1e−S(T )S(0)B(0)

(
2N
N
− N

3E2
B

3NJ 2
eff

− R0m∗N kT
msJeff

ns

)
(12)

wherenS = 〈NS〉/L denotes the soliton density. Let us recall that the present analysis
concerns the nonadiabatic regime (B < 1) and that soliton existence demandsS(T ) <
B(T )/N [15]. This implies that the validity of our results is restricted to the weak-coupling
limit. Under these circumstances the second term in the brackets in (12) is of the order of

N 3S2

3B2
≈ α2N

3
(α is a numerical factor less than unity due to the above-mentioned condition for soliton
existence) and can therefore be disregarded as compared with the first term. The third term
may be approximated as

1

1+ 16S2N 2/3

kT

J
nS ≈ kT

J
nS

and could play a significant role for higher temperatures (kT /J ∼ 27 for α-helix at 300 K
[3–5, 9–13]). This, however, depends on the value of the soliton density, which is deter-
mined by the value of the parameterε0 playing the role of the soliton creation (excitation)
energy. In the region where one should expect soliton existence, it may be approximated as
ε0 ≈ N [1−2J−EB−NEB/3]. The dominant terms in this expression are the first and the
last ones, whose balance determines the magnitude of the soliton density and consequently
determines the character of the temperature dependence of the above-predicted modifications
of the speed of sound. For the particular values of the physical parameters, characterizingα-
helix and ACN,1 greatly exceeds the other energy parameters of the system (see reference
[9], for example), so the soliton density is negligible and changes of the speed of sound are
temperature independent. To estimate the possible degree of these changes we may use, for
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these substances, the following approximate result:c = c0

√
1− 22.2αB2/N . Specifying

α = 0.5,B = 0.65 and choosingN = 25 to 200 sites, which are the values typically used in
numerical calculations [3–5], we obtain thatc may be reduced by up to 10%. In the systems
where the soliton excitation energy is not so high, the presence of the solitons in molecular
chains may induce specific modifications of the speed of sound. At low temperatures
(J � kT ) they reduce it with respect to that in the absence of the coupling with the vibron
subsystem (c0). With the rise of temperature it should tend toc0, and above some critical
temperature, which can be estimated roughly asT ∼ (2NJ/k)ns , it exceedsc0.

The above-predicted behaviour of the speed of sound as influenced by solitons is quite
different from that arising from the ‘dressed’ vibrons exclusively. That is, expanding the
operatorsBn in Fourier series we easily obtain

1

N

∑
n

〈
B+n (Bn+1+ Bn−1)

〉
0 =

2

N

∑
K

〈nK〉 cosKR0

where〈nK〉 = {eεK/kT − 1}−1 is the vibron average number andεK = 1 − 2Jeff cosKR0

is its energy. From this expression it follows that, like solitons, linear modes may also
cause a reduction of the speed of sound while, unlike in the previous case, increasing of
the temperature leads to an additional reduction of the speed of sound.

These results are analogous to those of reference [31], where we predicted characteristic
behaviour of the speed of sound in quasi-one-dimensional ferromagnets depending on the
type of the excitation of the magnetic subsystem: solitons or magnons. Thus, like in that
case, here there arises the interesting possibility of an indirect experimental examination of
solitons in molecular crystals based upon the above-predicted temperature dependence of
the speed of the sound, which should show quite different behaviour for different types of
the excitation of the vibron subsystem. Relevant experiments should be Brillouin scattering,
ultrasonic propagation and Young modulus measurements, analogous to those used in the
investigation of the large elastic softening induced by spin–phonon interaction [32–34].
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